1932

Abstract

Two topics have recently risen to prominence within the ongoing searches of beyond–Standard Model effects in and decays: observables that test lepton flavor universality (LFU) and those that test lepton flavor violation (LFV). A coherent set of measurements suggests nonstandard LFU effects. General arguments relate LFU to LFV, and the observed size of the former gives hope of observable signals for the latter. We attempt a comprehensive discussion of both theoretical and experimental aspects of these tests. The main final message is that all the instruments necessary to fully establish the putative new effects are at hand, thanks to running experiments and their upgrades. Therefore, this subject stands a concrete chance of ushering in genuinely unexpected discoveries.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-101122-045442
2023-09-25
2024-06-10
Loading full text...

Full text loading...

/deliver/fulltext/nucl/73/1/annurev-nucl-101122-045442.html?itemId=/content/journals/10.1146/annurev-nucl-101122-045442&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Hiller G, Krüger F. Phys. Rev. D 69:074020 2004.)
    [Google Scholar]
  2. 2.
    Aaij R et al.(LHCb Collab.) Nature Phys. 18:277 2022.)
    [Google Scholar]
  3. 3.
    Aaij R et al.(LHCb Collab.) J. High Energy Phys. 1708:55 2017.)
    [Google Scholar]
  4. 4.
    Aaij R et al.(LHCb Collab.) Phys. Rev. Lett. 128:191802 2022.)
    [Google Scholar]
  5. 5.
    Aaij R et al.(LHCb Collab.) J. High Energy Phys. 2005:40 2020.)
    [Google Scholar]
  6. 6.
    Lees JP et al.(BaBar Collab.) Phys. Rev. D 86:032012 2012.)
    [Google Scholar]
  7. 7.
    Abdesselam A et al.(Belle Collab.) Phys. Rev. Lett. 126:161801 2021.)
    [Google Scholar]
  8. 8.
    Choudhury S et al.(Belle Collab.) J. High Energy Phys. 2103:105 2021.)
    [Google Scholar]
  9. 9.
    Altmannshofer W, Archilli F. arXiv:2206.11331 [hep-ph] 2022.)
  10. 10.
    Lees JP et al.(BaBar Collab.) Phys. Rev. D 88:072012 2013.)
    [Google Scholar]
  11. 11.
    Amhis Y et al.(HFLAV Collab.) arXiv:2206.07501 [hep-ex] 2022.)
  12. 12.
    Glashow SL, Guadagnoli D, Lane K. Phys. Rev. Lett. 114:091801 2015.)
    [Google Scholar]
  13. 13.
    Aaij R et al.(LHCb Collab.) Phys. Rev. Lett. 118:052002 2017.). Erratum. Phys. Rev. Lett. 119:169901 2017.)
    [Google Scholar]
  14. 14.
    Aaij R et al.(LHCb Collab.) J. High Energy Phys. 1603:159 2016.). Erratum J. High Energy Phys. 1609:13 2016.). Erratum J. High Energy Phys. 1705:74 2017.)
    [Google Scholar]
  15. 15.
    Aaij R et al.(LHCb Collab.) Phys. Rev. D 100:112006 2019.)
    [Google Scholar]
  16. 16.
    Aaij R et al.(LHCb Collab.) Report LHCb-PUB-2022-012 CERN Geneva: 2022.)
  17. 17.
    Baptista Leite J et al.(LHCb Collab.) Report CERN-LHCC-2021-012 CERN Geneva: 2022.)
  18. 18.
    Forti F.(Belle II Collab.) arXiv:2203.11349 [hep-ex] 2022.)
  19. 19.
    Aggarwal L et al.(Belle II Collab.) arXiv:2207.06307 [hep-ex] 2022.)
  20. 20.
    Keck T et al. Comput. Softw. Big Sci. 3:6 2019.)
    [Google Scholar]
  21. 21.
    Abudinén F et al.(Belle II Collab.) Phys. Rev. Lett. 127:181802 2021.)
    [Google Scholar]
  22. 22.
    ATLAS/CMS Collab. Report ATL-PHYS-PUB-2022-018/CMS PAS FTR-22-001. CERN Geneva: 2022.)
  23. 23.
    Cheng HY, Lyu XR, Xing ZZ. arXiv:2203.03211 [hep-ph] 2022.)
  24. 24.
    Bernardi G et al. arXiv:2203.06520 [hep-ex] 2022.)
  25. 25.
    Cheng H et al.(CEPC Phys. Study Group.) arXiv:2205.08553 [hep-ph] 2022.)
  26. 26.
    Bifani S, Descotes-Genon S, Romero Vidal A, Schune MH J. Phys. G 46:023001 2019.)
    [Google Scholar]
  27. 27.
    Aaij R et al.(LHCb Collab.) J. High Energy Phys. 1406:133 2014.)
    [Google Scholar]
  28. 28.
    Aaij R et al.(LHCb Collab.) J. High Energy Phys. 1409:177 2014.)
    [Google Scholar]
  29. 29.
    Aaij R et al.(LHCb Collab.) Phys. Lett. B 743:46 2015.)
    [Google Scholar]
  30. 30.
    Aaij R et al.(LHCb Collab.) J. High Energy Phys. 1506:115 2015.). Erratum J. High Energy Phys. 1809:145 2018.)
    [Google Scholar]
  31. 31.
    Aaij R et al.(LHCb Collab.) J. High Energy Phys. 1509:179 2015.)
    [Google Scholar]
  32. 32.
    Aaij R et al.(LHCb Collab.) J. High Energy Phys. 1510:34 2015.)
    [Google Scholar]
  33. 33.
    Aaij R et al.(LHCb Collab.) J. High Energy Phys. 1612:65 2016.)
    [Google Scholar]
  34. 34.
    Aaij R et al.(LHCb Collab.) J. High Energy Phys. 1807:20 2018.)
    [Google Scholar]
  35. 35.
    Aaij R et al.(LHCb Collab.) Phys. Rev. Lett. 127:151801 2021.)
    [Google Scholar]
  36. 36.
    Aaij R et al.(LHCb Collab.) Phys. Rev. Lett. 120:121801 2018.)
    [Google Scholar]
  37. 37.
    Lees JP et al.(BaBar Collab.) Phys. Rev. D 86:012004 2012.)
    [Google Scholar]
  38. 38.
    Grygier J et al.(Belle Collab.) Phys. Rev. D 96:091101 2017.). Addendum. Phys. Rev. D 97:099902 2018.)
    [Google Scholar]
  39. 39.
    Dong TV et al.(Belle Collab.) arXiv:2110.03871 [hep-ex] 2021.)
  40. 40.
    Prim MT et al.(Belle Collab.) Phys. Rev. D 101:032007 2020.)
    [Google Scholar]
  41. 41.
    Workman RL et al.(Part. Data Group.) PTEP 2022:083C01 2022.)
    [Google Scholar]
  42. 42.
    Duan Y et al. Searching forprocesses at CEPC Letter of Interest. https://www.snowmass21.org/docs/files/summaries/EF/SNOWMASS21-EF3_EF0-RF1_RF0-IF3_IF6-077.pdf 2021.)
    [Google Scholar]
  43. 43.
    Bediaga I et al.(LHCb Collab.) Report CERN-LHCC-2018-027/LHCb-PUB-2018-009, CERN. Geneva: 2018.)
  44. 44.
    Zheng T et al. Chin. Phys. C 45:023001 2021.)
    [Google Scholar]
  45. 45.
    Bevan AJ et al.(BaBar/Belle Collab.) Eur. Phys. J. C 74:3026 2014.)
    [Google Scholar]
  46. 46.
    Adam NE et al.(CLEO Collab.) Phys. Rev. D 67:032001 2003.)
    [Google Scholar]
  47. 47.
    Aubert B et al.(BaBar Collab.) Phys. Rev. D 79:012002 2009.)
    [Google Scholar]
  48. 48.
    Glattauer R et al.(Belle Collab.) Phys. Rev. D 93:032006 2016.)
    [Google Scholar]
  49. 49.
    Abdesselam A et al.(Belle Collab.) arXiv:1702.01521 [hep-ex] 2017.)
  50. 50.
    Waheed E et al.(Belle Collab.) Phys. Rev. D 100:052007 2019.). Erratum Phys. Rev. D 103:079901 2021.)
    [Google Scholar]
  51. 51.
    Buras A. Gauge Theory of Weak Decays Cambridge, UK: Cambridge Univ. Press 2020.)
    [Google Scholar]
  52. 52.
    Lees JP et al.(BaBar Collab.) Phys. Rev. Lett. 109:101802 2012.)
    [Google Scholar]
  53. 53.
    Huschle M et al.(Belle Collab.) Phys. Rev. D 92:072014 2015.)
    [Google Scholar]
  54. 54.
    Hirose S et al.(Belle Collab.) Phys. Rev. Lett. 118:211801 2017.)
    [Google Scholar]
  55. 55.
    Hirose S et al.(Belle Collab.) Phys. Rev. D 97:012004 2018.)
    [Google Scholar]
  56. 56.
    Caria G et al.(Belle Collab.) Phys. Rev. Lett. 124:161803 2020.)
    [Google Scholar]
  57. 57.
    Aaij R et al.(LHCb Collab.) Phys. Rev. Lett. 115:111803 2015.)
    [Google Scholar]
  58. 58.
    Aaij R et al.(LHCb Collab.) Phys. Rev. Lett. 120:171802 2018.)
    [Google Scholar]
  59. 59.
    Aaij R et al.(LHCb Collab.) Phys. Rev. D 97:072013 2018.)
    [Google Scholar]
  60. 60.
    Aaij R et al.(LHCb Collab.) Phys. Rev. Lett. 128:191803 2021.)
    [Google Scholar]
  61. 61.
    Altmannshofer W et al.(Belle II Collab.) PTEP 2019:123C01 2019.). Erratum PTEP 2020:029201 2020.)
    [Google Scholar]
  62. 62.
    Ligeti Z, Tackmann FJ. Phys. Rev. D 90:034021 2014.)
    [Google Scholar]
  63. 63.
    Mannel T, Rusov AV, Shahriaran F. Nucl. Phys. B 921:211 2017.)
    [Google Scholar]
  64. 64.
    Ablikim M et al.(BESIII Collab.) Phys. Rev. Lett. 121:171803 2018.)
    [Google Scholar]
  65. 65.
    Aaij R et al.(LHCb Collab.) J. High Energy Phys. 1803:78 2018.)
    [Google Scholar]
  66. 66.
    Aaij R et al.(LHCb Collab.) Phys. Rev. Lett. 123:231802 2019.)
    [Google Scholar]
  67. 67.
    Aaij R et al.(LHCb Collab.) J. High Energy Phys. 2106:44 2021.)
    [Google Scholar]
  68. 68.
    Aaij R et al.(LHCb Collab.) Phys. Rev. Lett. 123:211801 2019.)
    [Google Scholar]
  69. 69.
    Aaij R et al.(LHCb Collab.) J. High Energy Phys. 2006:129 2020.)
    [Google Scholar]
  70. 70.
    Wang Y, Atwood D. Phys. Rev. D 68:094016 2003.)
    [Google Scholar]
  71. 71.
    Altmannshofer W, Yavin I. Phys. Rev. D 92:075022 2015.)
    [Google Scholar]
  72. 72.
    Capdevila B, Descotes-Genon S, Matias J, Virto J J. High Energy Phys. 1610:75 2016.)
    [Google Scholar]
  73. 73.
    Serra N, Silva Coutinho R, van Dyk D Phys. Rev. D 95:035029 2017.)
    [Google Scholar]
  74. 74.
    Bobeth C, Hiller G, Piranishvili G. J. High Energy Phys. 0712:040 2007.)
    [Google Scholar]
  75. 75.
    Bordone M, Isidori G, Pattori A. Eur. Phys. J. C 76:440 2016.)
    [Google Scholar]
  76. 76.
    Isidori G, Nabeebaccus S, Zwicky R J. High Energy Phys. 2012:104 2020.)
    [Google Scholar]
  77. 77.
    Isidori G, Lancierini D, Nabeebaccus S, Zwicky R. J. High Energy Phys. 2210:146 2022.)
    [Google Scholar]
  78. 78.
    Davidson N, Przedzinski T, Was Z. Comput. Phys. Commun. 199:86 2016.)
    [Google Scholar]
  79. 79.
    Szafron R Presented at 11th International Workshop on the CKM Unitarity Triangle, virtual. Nov. 25. https://indico.cern.ch/event/891123/contributions/4601715/ 2022.)
  80. 80.
    Guadagnoli D, Reboud M, Zwicky R J. High Energy Phys. 1711:184 2017.)
    [Google Scholar]
  81. 81.
    Kozachuk A, Melikhov D, Nikitin N. Phys. Rev. D 97:053007 2018.)
    [Google Scholar]
  82. 82.
    Kane C, Lehner C, Meinel S, Soni A. Proc. Sci. LATTICE2019:134 2019.)
    [Google Scholar]
  83. 83.
    Desiderio A et al. Phys. Rev. D 103:014502 2021.)
    [Google Scholar]
  84. 84.
    Beneke M, Bobeth C, Wang YM. J. High Energy Phys. 2012:148 2020.)
    [Google Scholar]
  85. 85.
    Wang YM. J. High Energy Phys. 1609:159 2016.)
    [Google Scholar]
  86. 86.
    Wang YM, Shen YL. J. High Energy Phys. 1805:184 2018.)
    [Google Scholar]
  87. 87.
    Pullin B, Zwicky R J. High Energy Phys. 2109:23 2021.)
    [Google Scholar]
  88. 88.
    Janowski T, Pullin B, Zwicky R. J. High Energy Phys. 2112:8 2021.)
    [Google Scholar]
  89. 89.
    Albrecht J, Stamou E, Ziegler R, Zwicky R. J. High Energy Phys. 2109:139 2021.)
    [Google Scholar]
  90. 90.
    Beneke M, Rohrwild J. Eur. Phys. J. C 71:1818 2011.)
    [Google Scholar]
  91. 91.
    Wang W, Wang YM, Xu J, Zhao S. Phys. Rev. D 102:011502 2020.)
    [Google Scholar]
  92. 92.
    Zhao S, Radyushkin AV. Phys. Rev. D 103:054022 2021.)
    [Google Scholar]
  93. 93.
    Galda AM, Neubert M, Wang X. arXiv:2203.08202 [hep-ph] 2022.)
  94. 94.
    Giusti D et al. Phys. Rev. Lett. 120:072001 2018.)
    [Google Scholar]
  95. 95.
    Di Carlo M et al. Phys. Rev. D 100:034514 2019.)
    [Google Scholar]
  96. 96.
    Beneke M, Bobeth C, Szafron R. Phys. Rev. Lett. 120:011801 2018.)
    [Google Scholar]
  97. 97.
    Beneke M, Bobeth C, Szafron R J. High Energy Phys. 1910:232 2019.)
    [Google Scholar]
  98. 98.
    Altmannshofer W, Stangl P. Eur. Phys. J. C 81:952 2021.)
    [Google Scholar]
  99. 99.
    Wehle S et al.(Belle Collab.) Phys. Rev. Lett. 118:111801 2017.)
    [Google Scholar]
  100. 100.
    Albrecht J et al. arXiv:1709.10308 [hep-ph] 2017.)
  101. 101.
    Bobeth C, Haisch U. Acta Phys. Polon. B 44:127 2013.)
    [Google Scholar]
  102. 102.
    Crivellin A, Greub C, Müller D, Saturnino F. Phys. Rev. Lett. 122:011805 2019.)
    [Google Scholar]
  103. 103.
    Aebischer J et al. Eur. Phys. J. C 80:252 2020.)
    [Google Scholar]
  104. 104.
    Alonso R, Grinstein B, Martin Camalich J J. High Energy Phys. 1510:184 2015.)
    [Google Scholar]
  105. 105.
    Hiller G, Schmaltz M. Phys. Rev. D 90:054014 2014.)
    [Google Scholar]
  106. 106.
    Bhattacharya B, Datta A, London D, Shivashankara S. Phys. Lett. B 742:370 2015.)
    [Google Scholar]
  107. 107.
    Feruglio F, Paradisi P, Pattori A. Phys. Rev. Lett. 118:011801 2017.)
    [Google Scholar]
  108. 108.
    Bečirević D, Sumensari O, Zukanovich Funchal R Eur. Phys. J. C 76:134 2016.)
    [Google Scholar]
  109. 109.
    Na H et al.(HPQCD Collab.) Phys. Rev. D 92:054510 2015.). Erratum Phys. Rev. D 93:119906 2016.)
    [Google Scholar]
  110. 110.
    Bailey JA et al.(MILC Collab.) Phys. Rev. D 92:034506 2015.)
    [Google Scholar]
  111. 111.
    Bailey JA et al.(Fermilab Lattice/MILC Collab.) Phys. Rev. D 89:114504 2014.)
    [Google Scholar]
  112. 112.
    Harrison J, Davies C, Wingate M.(HPQCD Collab.) Phys. Rev. D 97:054502 2018.)
    [Google Scholar]
  113. 113.
    Bazavov A et al.(Fermilab Lattice/MILC Collab.) Eur. Phys. J. C 82:1141 2022.)
    [Google Scholar]
  114. 114.
    McLean E et al. Phys. Rev. D 101:074513 2020.)
    [Google Scholar]
  115. 115.
    McLean E, Davies CTH, Lytle AT, Koponen J. Phys. Rev. D 99:114512 2019.)
    [Google Scholar]
  116. 116.
    Harrison J, Davies CTH.(HPQCD Collab.) Phys. Rev. D 105:094506 2022.)
    [Google Scholar]
  117. 117.
    Harrison J, Davies CTH, Lytle A.(HPQCD Collab.) Phys. Rev. D 102:094518 2020.)
    [Google Scholar]
  118. 118.
    Harrison J, Davies CTH, Lytle A.(LATTICE-HPQCD Collab.) Phys. Rev. Lett. 125:222003 2020.)
    [Google Scholar]
  119. 119.
    Detmold W, Lehner C, Meinel S. Phys. Rev. D 92:034503 2015.)
    [Google Scholar]
  120. 120.
    Datta A, Kamali S, Meinel S, Rashed A. J. High Energy Phys. 1708:131 2017.)
    [Google Scholar]
  121. 121.
    Meinel S, Rendon G. Phys. Rev. D 103:094516 2021.)
    [Google Scholar]
  122. 122.
    Meinel S, Rendon G. Phys. Rev. D 105:054511 2022.)
    [Google Scholar]
  123. 123.
    Boyle PA et al. arXiv:2205.15373 [hep-lat] 2022.)
  124. 124.
    Aoki Y et al.(FLAG Collab.) Eur. Phys. J. C 82:869 2022.)
    [Google Scholar]
  125. 125.
    Shifman MA, Vainshtein AI, Zakharov VI. Nucl. Phys. B 147:385 1979.)
    [Google Scholar]
  126. 126.
    Shifman MA, Vainshtein AI, Zakharov VI. Nucl. Phys. B 147:448 1979.)
    [Google Scholar]
  127. 127.
    Gao J et al. J. High Energy Phys. 2205:24 2022.)
    [Google Scholar]
  128. 128.
    Gubernari N, Kokulu A, van Dyk D. J. High Energy Phys. 1901:150 2019.)
    [Google Scholar]
  129. 129.
    Wang YM, Wei YB, Shen YL, CD. J. High Energy Phys. 1706:62 2017.)
    [Google Scholar]
  130. 130.
    Faller S, Khodjamirian A, Klein C, Mannel T. Eur. Phys. J. C 60:603 2009.)
    [Google Scholar]
  131. 131.
    Kim CS, Lopez-Castro G, Tostado SL, Vicente A Phys. Rev. D 95:013003 2017.)
    [Google Scholar]
  132. 132.
    Boyd CG, Grinstein B, Lebed RF. Phys. Rev. D 56:6895 1997.)
    [Google Scholar]
  133. 133.
    Isgur N, Wise MB. Phys. Lett. B 232:113 1989.)
    [Google Scholar]
  134. 134.
    Isgur N, Wise MB. Phys. Lett. B 237:527 1990.)
    [Google Scholar]
  135. 135.
    Shifman MA, Voloshin MB Sov. J. Nucl. Phys. 47:511 1988.)
    [Google Scholar]
  136. 136.
    Eichten E, Hill BR. Phys. Lett. B 234:511 1990.)
    [Google Scholar]
  137. 137.
    Bigi D, Gambino P, Schacht S J. High Energy Phys. 1711:61 2017.)
    [Google Scholar]
  138. 138.
    Bourrely C, Caprini I, Lellouch L. Phys. Rev. D 79:013008 2009.). Erratum Phys. Rev. D 82:09902 2010.)
    [Google Scholar]
  139. 139.
    Bigi D, Gambino P. Phys. Rev. D 94:094008 2016.)
    [Google Scholar]
  140. 140.
    Bigi D, Gambino P, Schacht S. Phys. Lett. B 769:441 2017.)
    [Google Scholar]
  141. 141.
    Jaiswal S, Nandi S, Patra SK. J. High Energy Phys. 1712:60 2017.)
    [Google Scholar]
  142. 142.
    Bernlochner FU, Ligeti Z, Papucci M, Robinson DJ. Phys. Rev. D 95:115008 2017.). Erratum Phys. Rev. D 97:05502 2018.)
    [Google Scholar]
  143. 143.
    Bernlochner FU, Ligeti Z, Robinson DJ, Sutcliffe WL. Phys. Rev. Lett. 121:202001 2018.)
    [Google Scholar]
  144. 144.
    Bernlochner FU, Ligeti Z, Robinson DJ, Sutcliffe WL. Phys. Rev. D 99:055008 2019.)
    [Google Scholar]
  145. 145.
    Bordone M, Jung M, van Dyk D. Eur. Phys. J. C 80:74 2020.)
    [Google Scholar]
  146. 146.
    Bordone M, Gubernari N, van Dyk D, Jung M Eur. Phys. J. C 80:347 2020.)
    [Google Scholar]
  147. 147.
    Bernlochner FU et al. Phys. Rev. D 106:096015 [hep-ph] 2022.)
    [Google Scholar]
  148. 148.
    Di Carlo M et al. Phys. Rev. D 104:054502 2021.)
    [Google Scholar]
  149. 149.
    Martinelli G, Simula S, Vittorio L. Phys. Rev. D 105:034503 2022.)
    [Google Scholar]
  150. 150.
    Martinelli G, Naviglio M, Simula S, Vittorio L. Phys. Rev. D 106:093002 2022.)
    [Google Scholar]
  151. 151.
    Lellouch L. Nucl. Phys. B 479:353 1996.)
    [Google Scholar]
  152. 152.
    Doršner I et al. Phys. Rep. 641:1 2016.)
    [Google Scholar]
  153. 153.
    Davidson S, Bailey DC, Campbell BA. Z. Phys. C 61:613 1994.)
    [Google Scholar]
  154. 154.
    Alonso R, Grinstein B, Martin Camalich J Phys. Rev. Lett. 113:241802 2014.)
    [Google Scholar]
  155. 155.
    Buttazzo D, Greljo A, Isidori G, Marzocca D. J. High Energy Phys. 1711:44 2017.)
    [Google Scholar]
  156. 156.
    Bauer M, Neubert M. Phys. Rev. Lett. 116:141802 2016.)
    [Google Scholar]
  157. 157.
    Bečirević D, Košnik N, Sumensari O, Zukanovich Funchal R J. High Energy Phys. 1611:35 2016.)
    [Google Scholar]
  158. 158.
    Cai Y, Gargalionis J, Schmidt MA, Volkas RR. J. High Energy Phys. 1710:47 2017.)
    [Google Scholar]
  159. 159.
    Barbieri R, Isidori G, Pattori A, Senia F. Eur. Phys. J. C 76:67 2016.)
    [Google Scholar]
  160. 160.
    Barbieri R et al. Eur. Phys. J. C 71:1725 2011.)
    [Google Scholar]
  161. 161.
    Barbieri R, Buttazzo D, Sala F, Straub DM. J. High Energy Phys. 1207:181 2012.)
    [Google Scholar]
  162. 162.
    Crivellin A, Müller D, Ota T J. High Energy Phys. 1709:40 2017.)
    [Google Scholar]
  163. 163.
    Marzocca D. J. High Energy Phys. 1807:121 2018.)
    [Google Scholar]
  164. 164.
    Bečirević D et al. Phys. Rev. D 98:055003 2018.)
    [Google Scholar]
  165. 165.
    Bečirević D et al. arXiv:2206.09717 [hep-ph] 2022.)
  166. 166.
    Marzocca D, Trifinopoulos S. Phys. Rev. Lett. 127:061803 2021.)
    [Google Scholar]
  167. 167.
    Calibbi L, Crivellin A, Ota T. Phys. Rev. Lett. 115:181801 2015.)
    [Google Scholar]
  168. 168.
    Di Luzio L, Greljo A, Nardecchia M. Phys. Rev. D 96:115011 2017.)
    [Google Scholar]
  169. 169.
    Assad N, Fornal B, Grinstein B. Phys. Lett. B 777:324 2018.)
    [Google Scholar]
  170. 170.
    Popov O, Schmidt MA, White G. Phys. Rev. D 100:035028 2019.)
    [Google Scholar]
  171. 171.
    Pati JC, Salam A. Phys. Rev. D 10:275 1974.). Erratum Phys. Rev. D 11:703 1975.)
    [Google Scholar]
  172. 172.
    Georgi H, Nakai Y. Phys. Rev. D 94:075005 2016.)
    [Google Scholar]
  173. 173.
    Bansal S et al. Phys. Rev. D 98:015037 2018.)
    [Google Scholar]
  174. 174.
    Cornella C et al. J. High Energy Phys. 2108:50 2021.)
    [Google Scholar]
  175. 175.
    Baker MJ, Fuentes-Martín J, Isidori G, König M. Eur. Phys. J. C 79:334 2019.)
    [Google Scholar]
  176. 176.
    Faroughy DA, Greljo A, Kamenik JF. Phys. Lett. B 764:126 2017.)
    [Google Scholar]
  177. 177.
    Buras AJ, Girrbach-Noe J, Niehoff C, Straub DM. J. High Energy Phys. 1502:184 2015.)
    [Google Scholar]
  178. 178.
    Di Luzio L et al. J. High Energy Phys. 1811:081 2018.)
    [Google Scholar]
  179. 179.
    Cornella C, Feruglio F, Paradisi P J. High Energy Phys. 1811:12 2018.)
    [Google Scholar]
  180. 180.
    Angelescu A et al. Phys. Rev. D 104:055017 2021.)
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-101122-045442
Loading
/content/journals/10.1146/annurev-nucl-101122-045442
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error