1932

Abstract

The innate immune system detects pathogens via germline-encoded receptors that bind to conserved pathogen ligands called pathogen-associated molecular patterns (PAMPs). Here we consider an additional strategy of pathogen sensing called effector-triggered immunity (ETI). ETI involves detection of pathogen-encoded virulence factors, also called effectors. Pathogens produce effectors to manipulate hosts to create a replicative niche and/or block host immunity. Unlike PAMPs, effectors are often diverse and rapidly evolving and can thus be unsuitable targets for direct detection by germline-encoded receptors. Effectors are instead often sensed indirectly via detection of their virulence activities. ETI is a viable strategy for pathogen sensing and is used across diverse phyla, including plants, but the molecular mechanisms of ETI are complex compared to simple receptor/ligand-based PAMP detection. Here we survey the mechanisms and functions of ETI, with a particular focus on emerging insights from animal studies. We suggest that many examples of ETI may remain to be discovered, hiding in plain sight throughout immunology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-101721-031732
2023-04-26
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/immunol/41/1/annurev-immunol-101721-031732.html?itemId=/content/journals/10.1146/annurev-immunol-101721-031732&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Daugherty MD, Malik HS. 2012. Rules of engagement: molecular insights from host-virus arms races. Annu. Rev. Genet. 46:677–700
    [Google Scholar]
  2. 2.
    Janeway CA Jr. 1989. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54:Part 11–13
    [Google Scholar]
  3. 3.
    Vance RE, Isberg RR, Portnoy DA. 2009. Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe 6:10–21
    [Google Scholar]
  4. 4.
    Chisholm ST, Coaker G, Day B, Staskawicz BJ. 2006. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–14
    [Google Scholar]
  5. 5.
    Jones JD, Dangl JL. 2006. The plant immune system. Nature 444:323–29
    [Google Scholar]
  6. 6.
    Lopes Fischer N, Naseer N, Shin S, Brodsky IE 2020. Effector-triggered immunity and pathogen sensing in metazoans. Nat. Microbiol. 5:14–26
    [Google Scholar]
  7. 7.
    Orzalli MH, Parameswaran P. 2022. Effector-triggered immunity in mammalian antiviral defense. Trends Immunol. 43:1006–17
    [Google Scholar]
  8. 8.
    Matzinger P. 1994. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12:991–1045
    [Google Scholar]
  9. 9.
    Shi Y, Evans JE, Rock KL. 2003. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425:516–21
    [Google Scholar]
  10. 10.
    Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. 2006. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–41
    [Google Scholar]
  11. 11.
    Finlay BB, Falkow S. 1997. Common themes in microbial pathogenicity revisited. Microbiol. Mol. Biol. Rev. 61:136–69
    [Google Scholar]
  12. 12.
    Wessling R, Epple P, Altmann S, He Y, Yang L, Henz SR et al. 2014. Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life. Cell Host Microbe 16:364–75
    [Google Scholar]
  13. 13.
    Petre B, Contreras MP, Bozkurt TO, Schattat MH, Sklenar J et al. 2021. Host-interactor screens of Phytophthora infestans RXLR proteins reveal vesicle trafficking as a major effector-targeted process. Plant Cell 33:1447–71
    [Google Scholar]
  14. 14.
    Medzhitov R, Janeway CA Jr. 1997. Innate immunity: the virtues of a nonclonal system of recognition. Cell 91:295–98
    [Google Scholar]
  15. 15.
    Fontana MF, Vance RE. 2011. Two signal models in innate immunity. Immunol. Rev. 243:26–39
    [Google Scholar]
  16. 16.
    Yuan M, Jiang Z, Bi G, Nomura K, Liu M et al. 2021. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 592:105–9
    [Google Scholar]
  17. 17.
    Feehan JM, Wang J, Sun X, Choi J, Ahn H-K et al. 2022. Oligomerisation of a plant helper NLR requires cell-surface and intracellular immune receptor activation. bioRxiv 2022.06.16.496440, June 17
  18. 18.
    Liston A, Masters SL. 2017. Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nat. Rev. Immunol. 17:208–14
    [Google Scholar]
  19. 19.
    Ellis JG, Dodds PN, Lawrence GJ. 2007. Flax rust resistance gene specificity is based on direct resistance-avirulence protein interactions. Annu. Rev. Phytopathol. 45:289–306
    [Google Scholar]
  20. 20.
    Krasileva KV, Dahlbeck D, Staskawicz BJ. 2010. Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector. Plant Cell 22:2444–58
    [Google Scholar]
  21. 21.
    Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B. 2000. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J. 19:4004–14
    [Google Scholar]
  22. 22.
    Martin R, Qi T, Zhang H, Liu F, King M et al. 2020. Structure of the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ. Science 370:eabd9993
    [Google Scholar]
  23. 23.
    Baumler AJ, Sperandio V. 2016. Interactions between the microbiota and pathogenic bacteria in the gut. Nature 535:85–93
    [Google Scholar]
  24. 24.
    Rogers AWL, Tsolis RM, Bäumler AJ. 2020. Salmonella versus the microbiome. Microbiol. Mol. Biol. Rev. 85:e00027–19
    [Google Scholar]
  25. 25.
    Moore PS, Boshoff C, Weiss RA, Chang Y. 1996. Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science 274:1739–44
    [Google Scholar]
  26. 26.
    Jones JD, Vance RE, Dangl JL. 2016. Intracellular innate immune surveillance devices in plants and animals. Science 354:aaf6395
    [Google Scholar]
  27. 27.
    Yue JX, Meyers BC, Chen JQ, Tian D, Yang S 2012. Tracing the origin and evolutionary history of plant nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes. New Phytol. 193:1049–63
    [Google Scholar]
  28. 28.
    Urbach JM, Ausubel FM. 2017. The NBS-LRR architectures of plant R-proteins and metazoan NLRs evolved in independent events. PNAS 114:1063–68
    [Google Scholar]
  29. 29.
    Van der Biezen EA, Jones JD 1998. Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem. Sci. 23:454–56
    [Google Scholar]
  30. 30.
    Flor HH. 1971. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9:275–96
    [Google Scholar]
  31. 31.
    Baggs E, Dagdas G, Krasileva KV. 2017. NLR diversity, helpers and integrated domains: making sense of the NLR IDentity. Curr. Opin. Plant Biol. 38:59–67
    [Google Scholar]
  32. 32.
    Adachi H, Derevnina L, Kamoun S. 2019. NLR singletons, pairs, and networks: evolution, assembly, and regulation of the intracellular immunoreceptor circuitry of plants. Curr. Opin. Plant Biol. 50:121–31
    [Google Scholar]
  33. 33.
    Mackey D, Belkhadir Y, Alonso JM, Ecker JR, Dangl JL. 2003. Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112:379–89
    [Google Scholar]
  34. 34.
    Axtell MJ, Staskawicz BJ. 2003. Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112:369–77
    [Google Scholar]
  35. 35.
    Pottinger SE, Innes RW. 2020. RPS5-mediated disease resistance: fundamental insights and translational applications. Annu. Rev. Phytopathol. 58:139–60
    [Google Scholar]
  36. 36.
    van der Hoorn RA, Kamoun S 2008. From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20:2009–17
    [Google Scholar]
  37. 37.
    Cesari S, Bernoux M, Moncuquet P, Kroj T, Dodds PN. 2014. A novel conserved mechanism for plant NLR protein pairs: the “integrated decoy” hypothesis. Front. Plant Sci. 5:606
    [Google Scholar]
  38. 38.
    Sarris PF, Duxbury Z, Huh SU, Ma Y, Segonzac C et al. 2015. A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell 161:1089–100
    [Google Scholar]
  39. 39.
    Le Roux C, Huet G, Jauneau A, Camborde L, Tremousaygue D et al. 2015. A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity. Cell 161:1074–88
    [Google Scholar]
  40. 40.
    Sarris PF, Cevik V, Dagdas G, Jones JD, Krasileva KV. 2016. Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens. BMC Biol. 14:8
    [Google Scholar]
  41. 41.
    Kroj T, Chanclud E, Michel-Romiti C, Grand X, Morel JB. 2016. Integration of decoy domains derived from protein targets of pathogen effectors into plant immune receptors is widespread. New Phytol. 210:618–26
    [Google Scholar]
  42. 42.
    Boyer L, Magoc L, Dejardin S, Cappillino M, Paquette N et al. 2011. Pathogen-derived effectors trigger protective immunity via activation of the Rac2 enzyme and the IMD or Rip kinase signaling pathway. Immunity 35:536–49
    [Google Scholar]
  43. 43.
    Melo JA, Ruvkun G. 2012. Inactivation of conserved C. elegans genes engages pathogen- and xenobiotic-associated defenses. Cell 149:452–66
    [Google Scholar]
  44. 44.
    McEwan DL, Kirienko NV, Ausubel FM. 2012. Host translational inhibition by Pseudomonas aeruginosa exotoxin A triggers an immune response in Caenorhabditis elegans. Cell Host Microbe 11:364–74
    [Google Scholar]
  45. 45.
    Dunbar TL, Yan Z, Balla KM, Smelkinson MG, Troemel ER. 2012. C. elegans detects pathogen-induced translational inhibition to activate immune signaling. Cell Host Microbe 11:375–86
    [Google Scholar]
  46. 46.
    Pellegrino MW, Nargund AM, Kirienko NV, Gillis R, Fiorese CJ, Haynes CM. 2014. Mitochondrial UPR-regulated innate immunity provides resistance to pathogen infection. Nature 516:414–17
    [Google Scholar]
  47. 47.
    Pukkila-Worley R. 2016. Surveillance immunity: an emerging paradigm of innate defense activation in Caenorhabditis elegans. PLOS Pathog. 12:e1005795
    [Google Scholar]
  48. 48.
    Fontana MF, Banga S, Barry KC, Shen X, Tan Y et al. 2011. Secreted bacterial effectors that inhibit host protein synthesis are critical for induction of the innate immune response to virulent Legionella pneumophila. PLOS Pathog. 7:e1001289
    [Google Scholar]
  49. 49.
    Millman A, Bernheim A, Stokar-Avihail A, Fedorenko T, Voichek M et al. 2020. Bacterial retrons function in anti-phage defense. Cell 183:1551–61.e12
    [Google Scholar]
  50. 50.
    Kärre K, Ljunggren HG, Piontek G, Kiessling R. 1986. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319:675–78
    [Google Scholar]
  51. 51.
    Hansen TH, Bouvier M. 2009. MHC class I antigen presentation: learning from viral evasion strategies. Nat. Rev. Immunol. 9:503–13
    [Google Scholar]
  52. 52.
    Karlhofer FM, Ribaudo RK, Yokoyama WM. 1992. MHC class I alloantigen specificity of Ly-49+ IL-2-activated natural killer cells. Nature 358:66–70
    [Google Scholar]
  53. 53.
    Sivori S, Vacca P, Del Zotto G, Munari E, Mingari MC, Moretta L. 2019. Human NK cells: surface receptors, inhibitory checkpoints, and translational applications. Cell Mol. Immunol. 16:430–41
    [Google Scholar]
  54. 54.
    Parikh BA, Bern MD, Piersma SJ, Yang L, Beckman DL et al. 2020. Control of viral infection by natural killer cell inhibitory receptors. Cell Rep. 32:107969
    [Google Scholar]
  55. 55.
    Babic M, Pyzik M, Zafirova B, Mitrovic M, Butorac V et al. 2010. Cytomegalovirus immunoevasin reveals the physiological role of “missing self” recognition in natural killer cell dependent virus control in vivo. J. Exp. Med. 207:2663–73
    [Google Scholar]
  56. 56.
    Cohen GB, Gandhi RT, Davis DM, Mandelboim O, Chen BK et al. 1999. The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells. Immunity 10:661–71
    [Google Scholar]
  57. 57.
    Lanier LL. 2015. NKG2D receptor and its ligands in host defense. Cancer Immunol. Res. 3:575–82
    [Google Scholar]
  58. 58.
    Raulet DH, Marcus A, Coscoy L. 2017. Dysregulated cellular functions and cell stress pathways provide critical cues for activating and targeting natural killer cells to transformed and infected cells. Immunol. Rev. 280:93–101
    [Google Scholar]
  59. 59.
    Greene TT, Tokuyama M, Knudsen GM, Kunz M, Lin J et al. 2016. A herpesviral induction of RAE-1 NKG2D ligand expression occurs through release of HDAC mediated repression. eLife 5:e14749
    [Google Scholar]
  60. 60.
    Sun YH, Rolan HG, Tsolis RM. 2007. Injection of flagellin into the host cell cytosol by Salmonella enterica serotype Typhimurium. J. Biol. Chem. 282:33897–901
    [Google Scholar]
  61. 61.
    Vance RE. 2015. The NAIP/NLRC4 inflammasomes. Curr. Opin. Immunol. 32:84–89
    [Google Scholar]
  62. 62.
    Girardin SE, Boneca IG, Carneiro LA, Antignac A, Jehanno M et al. 2003. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300:1584–87
    [Google Scholar]
  63. 63.
    Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A et al. 2003. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278:8869–72
    [Google Scholar]
  64. 64.
    Chamaillard M, Hashimoto M, Horie Y, Masumoto J, Qiu S et al. 2003. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat. Immunol. 4:7702–7
    [Google Scholar]
  65. 65.
    Inohara N, Ogura Y, Fontalba A, Gutierrez O, Pons F, Crespo J et al. 2003. Host recognition of bacterial muramyl dipeptide mediated through NOD2: implications for Crohn's disease. J. Biol. Chem. 278:5509–12
    [Google Scholar]
  66. 66.
    Stafford CA, Gassauer AM, de Oliveira Mann CC, Tanzer MC, Fessler E et al. 2022. Phosphorylation of muramyl peptides by NAGK is required for NOD2 activation. Nature 609:590–96
    [Google Scholar]
  67. 67.
    Keestra AM, Winter MG, Klein-Douwel D, Xavier MN, Winter SE et al. 2011. A Salmonella virulence factor activates the NOD1/NOD2 signaling pathway. mBio 2:e00266–11
    [Google Scholar]
  68. 68.
    Fukazawa A, Alonso C, Kurachi K, Gupta S, Lesser CF et al. 2008. GEF-H1 mediated control of NOD1 dependent NF-κB activation by Shigella effectors. PLOS Pathog. 4:e1000228
    [Google Scholar]
  69. 69.
    Keestra AM, Winter MG, Auburger JJ, Frassle SP, Xavier MN et al. 2013. Manipulation of small Rho GTPases is a pathogen-induced process detected by NOD1. Nature 496:233–37
    [Google Scholar]
  70. 70.
    Zhou D, Galan J. 2001. Salmonella entry into host cells: the work in concert of type III secreted effector proteins. Microbes Infect. 3:1293–98
    [Google Scholar]
  71. 71.
    Lemichez E, Aktories K. 2013. Hijacking of Rho GTPases during bacterial infection. Exp. Cell. Res. 319:2329–36
    [Google Scholar]
  72. 72.
    Hardt WD, Chen LM, Schuebel KE, Bustelo XR, Galan JE. 1998. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93:815–26
    [Google Scholar]
  73. 73.
    Bielig H, Lautz K, Braun PR, Menning M, Machuy N et al. 2014. The cofilin phosphatase slingshot homolog 1 (SSH1) links NOD1 signaling to actin remodeling. PLOS Pathog. 10:e1004351
    [Google Scholar]
  74. 74.
    Legrand-Poels S, Kustermans G, Bex F, Kremmer E, Kufer TA, Piette J. 2007. Modulation of Nod2-dependent NF-κB signaling by the actin cytoskeleton. J. Cell Sci. 120:1299–310
    [Google Scholar]
  75. 75.
    Bruno VM, Hannemann S, Lara-Tejero M, Flavell RA, Kleinstein SH, Galan JE. 2009. Salmonella Typhimurium type III secretion effectors stimulate innate immune responses in cultured epithelial cells. PLOS Pathog. 5:e1000538
    [Google Scholar]
  76. 76.
    Sun H, Kamanova J, Lara-Tejero M, Galan JE. 2018. Salmonella stimulates pro-inflammatory signalling through p21-activated kinases bypassing innate immune receptors. Nat. Microbiol. 3:1122–30
    [Google Scholar]
  77. 77.
    Keestra-Gounder AM, Byndloss MX, Seyffert N, Young BM, Chavez-Arroyo A et al. 2016. NOD1 and NOD2 signalling links ER stress with inflammation. Nature 532:394–97
    [Google Scholar]
  78. 78.
    Mendez JM, Kolora LD, Lemon JS, Dupree SL, Keestra-Gounder AM. 2019. Activation of the endoplasmic reticulum stress response impacts the NOD1 signaling pathway. Infect. Immun. 87:e00826–18
    [Google Scholar]
  79. 79.
    Molinaro R, Mukherjee T, Flick R, Philpott DJ, Girardin SE. 2019. Trace levels of peptidoglycan in serum underlie the NOD-dependent cytokine response to endoplasmic reticulum stress. J. Biol. Chem. 294:9007–15
    [Google Scholar]
  80. 80.
    Rathinam VA, Fitzgerald KA. 2016. Inflammasome complexes: emerging mechanisms and effector functions. Cell 165:792–800
    [Google Scholar]
  81. 81.
    Broz P, Dixit VM. 2016. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16:407–20
    [Google Scholar]
  82. 82.
    Xu H, Yang J, Gao W, Li L, Li P et al. 2014. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513:237–41
    [Google Scholar]
  83. 83.
    Black DS, Bliska JB. 2000. The RhoGAP activity of the Yersinia pseudotuberculosis cytotoxin YopE is required for antiphagocytic function and virulence. Mol. Microbiol. 37:515–27
    [Google Scholar]
  84. 84.
    Shao F, Dixon JE. 2003. YopT is a cysteine protease cleaving Rho family GTPases. Adv. Exp. Med. Biol. 529:79–84
    [Google Scholar]
  85. 85.
    Gao W, Yang J, Liu W, Wang Y, Shao F. 2016. Site-specific phosphorylation and microtubule dynamics control Pyrin inflammasome activation. PNAS 113:E4857–66
    [Google Scholar]
  86. 86.
    Park YH, Wood G, Kastner DL, Chae JJ 2016. Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat. Immunol. 17:914–21
    [Google Scholar]
  87. 87.
    Chung LK, Park YH, Zheng Y, Brodsky IE, Hearing P et al. 2016. The Yersinia virulence factor YopM hijacks host kinases to inhibit type III effector-triggered activation of the pyrin inflammasome. Cell Host Microbe 20:296–306
    [Google Scholar]
  88. 88.
    Park YH, Remmers EF, Lee W, Ombrello AK, Chung LK et al. 2020. Ancient familial Mediterranean fever mutations in human pyrin and resistance to Yersinia pestis. Nat. Immunol. 21:857–67
    [Google Scholar]
  89. 89.
    Sandstrom A, Mitchell PS, Goers L, Mu EW, Lesser CF, Vance RE. 2019. Functional degradation: a mechanism of NLRP1 inflammasome activation by diverse pathogen enzymes. Science 364:eaau1330
    [Google Scholar]
  90. 90.
    Chui AJ, Okondo MC, Rao SD, Gai K, Griswold AR et al. 2019. N-terminal degradation activates the NLRP1B inflammasome. Science 364:82–85
    [Google Scholar]
  91. 91.
    Boyden ED, Dietrich WF. 2006. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat. Genet. 38:240–44
    [Google Scholar]
  92. 92.
    Levinsohn JL, Newman ZL, Hellmich KA, Fattah R, Getz MA et al. 2012. Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome. PLOS Pathog. 8:e1002638
    [Google Scholar]
  93. 93.
    Chavarria-Smith J, Vance RE. 2013. Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor. PLOS Pathog. 9:e1003452
    [Google Scholar]
  94. 94.
    Robinson KS, Teo DET, Tan KS, Toh GA et al. 2020. Enteroviral 3C protease activates the human NLRP1 inflammasome in airway epithelia. Science 370:eaay2002
    [Google Scholar]
  95. 95.
    Tsu BV, Beierschmitt C, Ryan AP, Agarwal R, Mitchell PS, Daugherty MD. 2021. Diverse viral proteases activate the NLRP1 inflammasome. eLife 10:e60609
    [Google Scholar]
  96. 96.
    Planes R, Pinilla M, Santoni K, Hessel A, Passemar C et al. 2022. Human NLRP1 is a sensor of pathogenic coronavirus 3CL proteases in lung epithelial cells. Mol. Cell 82:2385–400.e9
    [Google Scholar]
  97. 97.
    Ewald SE, Chavarria-Smith J, Boothroyd JC. 2014. NLRP1 is an inflammasome sensor for Toxoplasma gondii. Infect. Immun. 82:460–68
    [Google Scholar]
  98. 98.
    Cirelli KM, Gorfu G, Hassan MA, Printz M, Crown D et al. 2014. Inflammasome sensor NLRP1 controls rat macrophage susceptibility to Toxoplasma gondii. PLOS Pathog. 10:e1003927
    [Google Scholar]
  99. 99.
    Luchetti G, Roncaioli JL, Chavez RA, Schubert AF, Kofoed EM et al. 2021. Shigella ubiquitin ligase IpaH7.8 targets gasdermin D for degradation to prevent pyroptosis and enable infection. Cell Host Microbe 29:1521–30.e10
    [Google Scholar]
  100. 100.
    Hansen JM, de Jong MF, Wu Q, Zhang LS, Heisler DB et al. 2021. Pathogenic ubiquitination of GSDMB inhibits NK cell bactericidal functions. Cell 184:3178–91.e18
    [Google Scholar]
  101. 101.
    Chavarria-Smith J, Mitchell PS, Ho AM, Daugherty MD, Vance RE. 2016. Functional and evolutionary analyses identify proteolysis as a general mechanism for NLRP1 inflammasome activation. PLOS Pathog. 12:e1006052
    [Google Scholar]
  102. 102.
    Mitchell PS, Sandstrom A, Vance RE. 2019. The NLRP1 inflammasome: new mechanistic insights and unresolved mysteries. Curr. Opin. Immunol. 60:37–45
    [Google Scholar]
  103. 103.
    Okondo MC, Rao SD, Taabazuing CY, Chui AJ, Poplawski SE et al. 2018. Inhibition of Dpp8/9 activates the Nlrp1b inflammasome. Cell Chem. Biol. 25:262–67.e5
    [Google Scholar]
  104. 104.
    Hollingsworth LR, Sharif H, Griswold AR, Fontana P, Mintseris J et al. 2021. DPP9 sequesters the C terminus of NLRP1 to repress inflammasome activation. Nature 592:778–83
    [Google Scholar]
  105. 105.
    Orth-He EL, Huang H-C, Rao SD, Wang Q, Chen Q et al. 2022. Cytosolic peptide accumulation activates the NLRP1 and CARD8 inflammasomes. bioRxiv 2022.03.22.485298, Mar. 22
  106. 106.
    Wang Q, Hsiao JC, Yardeny N, Huang H-C et al. 2022. The NLRP1 and CARD8 inflammasomes detect reductive stress. bioRxiv 2022.03.22.485209, Mar. 22
  107. 107.
    Ball DP, Wang AE, Warren CD, Wang Q, Griswold AR et al. 2021. Oxidized thioredoxin-1 restrains the NLRP1 inflammasome. bioRxiv 2021.09.20.461118, Sep. 20
  108. 108.
    Jenster L-M, Lange K-E, Normann S, vom Hemdt A, Wuerth JD et al. 2022. p38 kinases mediate NLRP1 inflammasome activation after ribotoxic stress response and virus infection. bioRxiv 2022.01.24.477423, Jan. 25
  109. 109.
    Robinson KS, Toh GA, Rozario P, Chua R, Bauernfried S et al. 2022. ZAKα-driven ribotoxic stress response activates the human NLRP1 inflammasome. Science 377:328–35
    [Google Scholar]
  110. 110.
    Smith WE, Kane AV, Campbell ST, Acheson DW, Cochran BH, Thorpe CM. 2003. Shiga toxin 1 triggers a ribotoxic stress response leading to p38 and JNK activation and induction of apoptosis in intestinal epithelial cells. Infect. Immun. 71:1497–504
    [Google Scholar]
  111. 111.
    Subramanian A, Wang L, Moss T, Voorhies M, Sangwan S et al. 2022. A Legionella toxin mimics tRNA and glycosylates the translation machinery to trigger a ribotoxic stress response. bioRxiv 2022.06.10.495705, June 12
  112. 112.
    D'Osualdo A, Weichenberger CX, Wagner RN, Godzik A, Wooley J, Reed JC. 2011. CARD8 and NLRP1 undergo autoproteolytic processing through a ZU5-like domain. PLOS ONE 6:e27396
    [Google Scholar]
  113. 113.
    Wang Q, Gao H, Clark KM, Mugisha CS, Davis K et al. 2021. CARD8 is an inflammasome sensor for HIV-1 protease activity. Science 371:eabe1707
    [Google Scholar]
  114. 114.
    Kulsuptrakul J, Turcotte EA, Emerman M, Mitchell PS. 2022. A human-specific motif facilitates CARD8 inflammasome activation after HIV-1 infection. bioRxiv 2022.10.04.510817, Oct. 4
  115. 115.
    Nadkarni R, Chu WC, Lee CQE, Mohamud Y, Yap L et al. 2022. Viral proteases activate the CARD8 inflammasome in the human cardiovascular system. J. Exp. Med. 219:10e20212117
    [Google Scholar]
  116. 116.
    Tsu BV, Agarwal R, Gokhale NS, Kulsuptrakul J, Ryan AP et al. 2022. Host specific sensing of coronaviruses and picornaviruses by the CARD8 inflammasome. bioRxiv 2022.09.21.508960, Sep. 22
  117. 117.
    Johnson DC, Taabazuing CY, Okondo MC, Chui AJ, Rao SD et al. 2018. DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia. Nat. Med. 24:1151–56
    [Google Scholar]
  118. 118.
    Rao SD, Chen Q, Wang Q, Orth-He EL, Saoi M et al. 2022. M24B aminopeptidase inhibitors selectively activate the CARD8 inflammasome. Nat. Chem. Biol. 18:565–74
    [Google Scholar]
  119. 119.
    Munoz-Planillo R, Kuffa P, Martinez-Colon G, Smith BL, Rajendiran TM, Nunez G. 2013. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38:1142–53
    [Google Scholar]
  120. 120.
    Chen J, Chen ZJ. 2018. PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. Nature 564:71–76
    [Google Scholar]
  121. 121.
    Zhang Z, Venditti R, Ran L, Liu Z, Vivot K et al. 2023. Distinct changes in endosomal composition promote NLRP3 inflammasome activation. Nat. Immunol. 24:30–41
    [Google Scholar]
  122. 122.
    Sharif H, Wang L, Wang WL, Magupalli VG, Andreeva L et al. 2019. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature 570:338–43
    [Google Scholar]
  123. 123.
    Xiao L, Magupalli VG, Wu H. 2023. Cryo-EM structures of the active NLRP3 inflammasome disc. Nature 613:595–600
    [Google Scholar]
  124. 124.
    Schmid-Burgk JL, Chauhan D, Schmidt T, Ebert TS, Reinhardt J et al. 2016. A genome-wide CRISPR (clustered regularly interspaced short palindromic repeats) screen identifies NEK7 as an essential component of NLRP3 inflammasome activation. J. Biol. Chem. 291:103–9
    [Google Scholar]
  125. 125.
    Shi H, Wang Y, Li X, Zhan X, Tang M et al. 2016. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat. Immunol. 17:250–58
    [Google Scholar]
  126. 126.
    He Y, Zeng MY, Yang D, Motro B, Nunez G. 2016. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 530:354–57
    [Google Scholar]
  127. 127.
    Craven RR, Gao X, Allen IC, Gris D, Bubeck Wardenburg J et al. 2009. Staphylococcus aureus alpha-hemolysin activates the NLRP3-inflammasome in human and mouse monocytic cells. PLOS ONE 4:e7446
    [Google Scholar]
  128. 128.
    McCoy AJ, Koizumi Y, Toma C, Higa N, Dixit V et al. 2010. Cytotoxins of the human pathogen Aeromonas hydrophila trigger, via the NLRP3 inflammasome, caspase-1 activation in macrophages. Eur. J. Immunol. 40:2797–803
    [Google Scholar]
  129. 129.
    Bhakdi S, Muhly M, Korom S, Hugo F. 1989. Release of interleukin-1 beta associated with potent cytocidal action of staphylococcal alpha-toxin on human monocytes. Infect. Immun. 57:3512–19
    [Google Scholar]
  130. 130.
    Perregaux D, Barberia J, Lanzetti AJ, Geoghegan KF, Carty TJ, Gabel CA. 1992. IL-1 beta maturation: evidence that mature cytokine formation can be induced specifically by nigericin. J. Immunol. 149:1294–303
    [Google Scholar]
  131. 131.
    Ichinohe T, Pang IK, Iwasaki A. 2010. Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nat. Immunol. 11:404–10
    [Google Scholar]
  132. 132.
    Pandey KP, Zhou Y. 2022. Influenza A virus infection activates NLRP3 inflammasome through trans-Golgi network dispersion. Viruses 14:88
    [Google Scholar]
  133. 133.
    Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K et al. 2015. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526:666–71
    [Google Scholar]
  134. 134.
    Shi J, Zhao Y, Wang K, Shi X, Wang Y et al. 2015. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660–65
    [Google Scholar]
  135. 135.
    Ding J, Wang K, Liu W, She Y, Sun Q et al. 2016. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535:111–16
    [Google Scholar]
  136. 136.
    Deng W, Bai Y, Deng F, Pan Y, Mei S et al. 2022. Streptococcal pyrogenic exotoxin B cleaves GSDMA and triggers pyroptosis. Nature 602:496–502
    [Google Scholar]
  137. 137.
    LaRock DL, Johnson AF, Wilde S, Sands JS, Monteiro MP, LaRock CN. 2022. Group A Streptococcus induces GSDMA-dependent pyroptosis in keratinocytes. Nature 605:527–31
    [Google Scholar]
  138. 138.
    Sun J, LaRock DL, Skowronski EA, Kimmey JM, Olson J et al. 2020. The Pseudomonas aeruginosa protease LasB directly activates IL-1β. EBioMedicine 60:102984
    [Google Scholar]
  139. 139.
    LaRock CN, Todd J, LaRock DL, Olson J, O'Donoghue AJ et al. 2016. IL-1β is an innate immune sensor of microbial proteolysis. Sci. Immunol. 1:eaah3539
    [Google Scholar]
  140. 140.
    Johnson AF, Sands JS, Trivedi K, Russell R, LaRock DL, LaRock CN. 2021. Pro-IL-18 secreted by keratinocytes detects the group A streptococcal protease SpeB. bioRxiv 2021.08.22.457234, Aug. 22
  141. 141.
    Stern-Ginossar N, Thompson SR, Mathews MB, Mohr I. 2019. Translational control in virus-infected cells. Cold Spring Harb. Perspect. Biol. 11:a033001
    [Google Scholar]
  142. 142.
    Melton-Celsa AR. 2014. Shiga toxin (Stx) classification, structure, and function. Microbiol. Spectr. 2: EHEC-0024-2013
    [Google Scholar]
  143. 143.
    Belyi Y, Jank T, Aktories K. 2013. Cytotoxic glucosyltransferases of Legionella pneumophila. Curr. Top. Microbiol. Immunol. 376:211–26
    [Google Scholar]
  144. 144.
    Hempstead AD, Isberg RR. 2015. Inhibition of host cell translation elongation by Legionella pneumophila blocks the host cell unfolded protein response. PNAS 112:E6790–97
    [Google Scholar]
  145. 145.
    Treacy-Abarca S, Mukherjee S. 2015. Legionella suppresses the host unfolded protein response via multiple mechanisms. Nat. Commun. 6:7887
    [Google Scholar]
  146. 146.
    De Leon JA, Qiu J, Nicolai CJ, Counihan JL, Barry KC et al. 2017. Positive and negative regulation of the master metabolic regulator mTORC1 by two families of Legionella pneumophila effectors. Cell Rep. 21:2031–38
    [Google Scholar]
  147. 147.
    Youngner JS, Stinebring WR, Taube SE. 1965. Influence of inhibitors of protein synthesis on interferon formation in mice. Virology 27:541–50
    [Google Scholar]
  148. 148.
    Thorpe CM, Smith WE, Hurley BP, Acheson DW. 2001. Shiga toxins induce, superinduce, and stabilize a variety of C-X-C chemokine mRNAs in intestinal epithelial cells, resulting in increased chemokine expression. Infect. Immun. 69:6140–47
    [Google Scholar]
  149. 149.
    Thorpe CM, Hurley BP, Lincicome LL, Jacewicz MS, Keusch GT, Acheson DW. 1999. Shiga toxins stimulate secretion of interleukin-8 from intestinal epithelial cells. Infect. Immun. 67:5985–93
    [Google Scholar]
  150. 150.
    Barry KC, Ingolia NT, Vance RE. 2017. Global analysis of gene expression reveals mRNA superinduction is required for the inducible immune response to a bacterial pathogen. eLife 6:e22707
    [Google Scholar]
  151. 151.
    Liu X, Boyer MA, Holmgren AM, Shin S. 2020. Legionella-infected macrophages engage the alveolar epithelium to metabolically reprogram myeloid cells and promote antibacterial inflammation. Cell Host Microbe 28:683–98.e6
    [Google Scholar]
  152. 152.
    Copenhaver AM, Casson CN, Nguyen HT, Duda MM, Shin S. 2015. IL-1R signaling enables bystander cells to overcome bacterial blockade of host protein synthesis. PNAS 112:7557–62
    [Google Scholar]
  153. 153.
    Fontana MF, Shin S, Vance RE. 2012. Activation of host mitogen-activated protein kinases by secreted Legionella pneumophila effectors that inhibit host protein translation. Infect. Immun. 80:3570–75
    [Google Scholar]
  154. 154.
    Orzalli MH, Prochera A, Payne L, Smith A, Garlick JA, Kagan JC. 2021. Virus-mediated inactivation of anti-apoptotic Bcl-2 family members promotes Gasdermin-E-dependent pyroptosis in barrier epithelial cells. Immunity 54:1447–62.e5
    [Google Scholar]
  155. 155.
    Asrat S, Dugan AS, Isberg RR. 2014. The frustrated host response to Legionella pneumophila is bypassed by MyD88-dependent translation of pro-inflammatory cytokines. PLOS Pathog. 10:e1004229
    [Google Scholar]
  156. 156.
    Ivanov SS, Roy CR. 2013. Pathogen signatures activate a ubiquitination pathway that modulates the function of the metabolic checkpoint kinase mTOR. Nat. Immunol. 14:1219–28
    [Google Scholar]
  157. 157.
    Lipo E, Asrat S, Huo W, Sol A, Fraser CS, Isberg RR. 2022. 5′ untranslated mRNA regions allow bypass of host cell translation inhibition by Legionella pneumophila. bioRxiv 2022.04.29.490120, Apr. 30
  158. 158.
    Tattoli I, Sorbara MT, Vuckovic D, Ling A, Soares F et al. 2012. Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program. Cell Host Microbe 11:563–75
    [Google Scholar]
  159. 159.
    Lemaitre B, Girardin SE. 2013. Translation inhibition and metabolic stress pathways in the host response to bacterial pathogens. Nat. Rev. Microbiol. 11:365–69
    [Google Scholar]
  160. 160.
    Peterson LW, Brodsky IE. 2020. To catch a thief: regulated RIPK1 post-translational modifications as a fail-safe system to detect and overcome pathogen subversion of immune signaling. Curr. Opin. Microbiol. 54:111–18
    [Google Scholar]
  161. 161.
    Peltzer N, Darding M, Walczak H. 2016. Holding RIPK1 on the ubiquitin leash in TNFR1 signaling. Trends Cell Biol. 26:445–61
    [Google Scholar]
  162. 162.
    Brenner D, Blaser H, Mak TW. 2015. Regulation of tumour necrosis factor signalling: Live or let die. Nat. Rev. Immunol. 15:362–74
    [Google Scholar]
  163. 163.
    Dondelinger Y, Jouan-Lanhouet S, Divert T, Theatre E, Bertin J et al. 2015. NF-κB-independent role of IKKα/IKKβ in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during TNF signaling. Mol. Cell 60:63–76
    [Google Scholar]
  164. 164.
    Micheau O, Lens S, Gaide O, Alevizopoulos K, Tschopp J 2001. NF-κB signals induce the expression of c-FLIP. Mol. Cell. Biol. 21:5299–305
    [Google Scholar]
  165. 165.
    Orning P, Weng D, Starheim K, Ratner D, Best Z et al. 2018. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science 362:1064–69
    [Google Scholar]
  166. 166.
    Chauhan D, Bartok E, Gaidt MM, Bock FJ, Herrmann J et al. 2018. BAX/BAK-induced apoptosis results in caspase-8-dependent IL-1β maturation in macrophages. Cell Rep. 25:2354–68.e5
    [Google Scholar]
  167. 167.
    Maelfait J, Vercammen E, Janssens S, Schotte P, Haegman M et al. 2008. Stimulation of Toll-like receptor 3 and 4 induces interleukin-1β maturation by caspase-8. J. Exp. Med. 205:1967–73
    [Google Scholar]
  168. 168.
    Gitlin AD, Heger K, Schubert AF, Reja R, Yan D et al. 2020. Integration of innate immune signalling by caspase-8 cleavage of N4BP1. Nature 587:275–80
    [Google Scholar]
  169. 169.
    Newton K, Wickliffe KE, Dugger DL, Maltzman A, Roose-Girma M et al. 2019. Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis. Nature 574:428–31
    [Google Scholar]
  170. 170.
    Lalaoui N, Boyden SE, Oda H, Wood GM, Stone DL et al. 2020. Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease. Nature 577:103–8
    [Google Scholar]
  171. 171.
    Tao P, Sun J, Wu Z, Wang S, Wang J et al. 2020. A dominant autoinflammatory disease caused by non-cleavable variants of RIPK1. Nature 577:109–14
    [Google Scholar]
  172. 172.
    Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P et al. 2011. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471:363–67
    [Google Scholar]
  173. 173.
    Lacey CA, Miao EA. 2020. Programmed cell death in the evolutionary race against bacterial virulence factors. Cold Spring Harb. Perspect. Biol. 12:2a036459
    [Google Scholar]
  174. 174.
    Mittal R, Peak-Chew SY, McMahon HT 2006. Acetylation of MEK2 and IκB kinase (IKK) activation loop residues by YopJ inhibits signaling. PNAS 103:18574–79
    [Google Scholar]
  175. 175.
    Mukherjee S, Keitany G, Li Y, Wang Y, Ball HL et al. 2006. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312:1211–14
    [Google Scholar]
  176. 176.
    Paquette N, Conlon J, Sweet C, Rus F, Wilson L et al. 2012. Serine/threonine acetylation of TGFβ-activated kinase (TAK1) by Yersinia pestis YopJ inhibits innate immune signaling. PNAS 109:12710–15
    [Google Scholar]
  177. 177.
    Peterson LW, Philip NH, DeLaney A, Wynosky-Dolfi MA, Asklof K et al. 2017. RIPK1-dependent apoptosis bypasses pathogen blockade of innate signaling to promote immune defense. J. Exp. Med. 214:3171–82
    [Google Scholar]
  178. 178.
    Blasche S, Mortl M, Steuber H, Siszler G, Nisa S et al. 2013. The E. coli effector protein NleF is a caspase inhibitor. PLOS ONE 8:e58937
    [Google Scholar]
  179. 179.
    Li S, Zhang L, Yao Q, Li L, Dong N et al. 2013. Pathogen blocks host death receptor signalling by arginine GlcNAcylation of death domains. Nature 501:242–46
    [Google Scholar]
  180. 180.
    Pearson JS, Giogha C, Muhlen S, Nachbur U, Pham CL et al. 2017. EspL is a bacterial cysteine protease effector that cleaves RHIM proteins to block necroptosis and inflammation. Nat. Microbiol. 2:16258
    [Google Scholar]
  181. 181.
    Ashida H, Sasakawa C, Suzuki T. 2020. A unique bacterial tactic to circumvent the cell death crosstalk induced by blockade of caspase-8. EMBO J. 39:e104469
    [Google Scholar]
  182. 182.
    Li M, Beg AA. 2000. Induction of necrotic-like cell death by tumor necrosis factor alpha and caspase inhibitors: novel mechanism for killing virus-infected cells. J. Virol. 74:7470–77
    [Google Scholar]
  183. 183.
    Cho YS, Challa S, Moquin D, Genga R, Ray TD et al. 2009. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137:1112–23
    [Google Scholar]
  184. 184.
    Liu Z, Nailwal H, Rector J, Rahman MM, Sam R et al. 2021. A class of viral inducer of degradation of the necroptosis adaptor RIPK3 regulates virus-induced inflammation. Immunity 54:247–58.e7
    [Google Scholar]
  185. 185.
    Skaletskaya A, Bartle LM, Chittenden T, McCormick AL, Mocarski ES, Goldmacher VS. 2001. A cytomegalovirus-encoded inhibitor of apoptosis that suppresses caspase-8 activation. PNAS 98:7829–34
    [Google Scholar]
  186. 186.
    McCormick AL, Skaletskaya A, Barry PA, Mocarski ES, Goldmacher VS. 2003. Differential function and expression of the viral inhibitor of caspase 8-induced apoptosis (vICA) and the viral mitochondria-localized inhibitor of apoptosis (vMIA) cell death suppressors conserved in primate and rodent cytomegaloviruses. Virology 316:221–33
    [Google Scholar]
  187. 187.
    Upton JW, Kaiser WJ, Mocarski ES. 2010. Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe 7:302–13
    [Google Scholar]
  188. 188.
    Guo H, Omoto S, Harris PA, Finger JN, Bertin J et al. 2015. Herpes simplex virus suppresses necroptosis in human cells. Cell Host Microbe 17:243–51
    [Google Scholar]
  189. 189.
    Barbalat R, Ewald SE, Mouchess ML, Barton GM. 2011. Nucleic acid recognition by the innate immune system. Annu. Rev. Immunol. 29:185–214
    [Google Scholar]
  190. 190.
    de Oliveira Mann CC, Hornung V 2021. Molecular mechanisms of nonself nucleic acid recognition by the innate immune system. Eur. J. Immunol. 51:1897–910
    [Google Scholar]
  191. 191.
    Garcia-Sastre A. 2017. Ten strategies of interferon evasion by viruses. Cell Host Microbe 22:176–84
    [Google Scholar]
  192. 192.
    Gaidt MM, Morrow A, Fairgrieve MR, Karr JP, Yosef N, Vance RE. 2021. Self-guarding of MORC3 enables virulence factor-triggered immunity. Nature 600:138–42
    [Google Scholar]
  193. 193.
    Rodriguez MC, Dybas JM, Hughes J, Weitzman MD, Boutell C. 2020. The HSV-1 ubiquitin ligase ICP0: modifying the cellular proteome to promote infection. Virus Res. 285:198015
    [Google Scholar]
  194. 194.
    Sloan E, Orr A, Everett RD. 2016. MORC3, a component of PML nuclear bodies, has a role in restricting herpes simplex virus 1 and human cytomegalovirus. J. Virol. 90:8621–33
    [Google Scholar]
  195. 195.
    Sloan E, Tatham MH, Groslambert M, Glass M, Orr A et al. 2015. Analysis of the SUMO2 proteome during HSV-1 infection. PLOS Pathog. 11:e1005059
    [Google Scholar]
  196. 196.
    Crowl JT, Stetson DB. 2018. SUMO2 and SUMO3 redundantly prevent a noncanonical type I interferon response. PNAS 115:6798–803
    [Google Scholar]
  197. 197.
    Decque A, Joffre O, Magalhaes JG, Cossec JC, Blecher-Gonen R et al. 2015. Sumoylation coordinates the repression of inflammatory and anti-viral gene-expression programs during innate sensing. Nat. Immunol. 17:140–49
    [Google Scholar]
  198. 198.
    Crow YJ, Stetson DB. 2022. The type I interferonopathies: 10 years on. Nat. Rev. Immunol. 22:8471–483
    [Google Scholar]
  199. 199.
    Dzimianski JV, Scholte FEM, Bergeron E, Pegan SD. 2019. ISG15: It's complicated. J. Mol. Biol. 431:4203–16
    [Google Scholar]
  200. 200.
    Deutschmann J, Gramberg T. 2021. SAMHD1 … and viral ways around it. Viruses 13:395
    [Google Scholar]
  201. 201.
    Coggins SA, Mahboubi B, Schinazi RF, Kim B. 2020. SAMHD1 functions and human diseases. Viruses 12:382
    [Google Scholar]
  202. 202.
    Tisserand J, Khetchoumian K, Thibault C, Dembele D, Chambon P, Losson R. 2011. Tripartite motif 24 (Trim24/Tif1α) tumor suppressor protein is a novel negative regulator of interferon (IFN)/signal transducers and activators of transcription (STAT) signaling pathway acting through retinoic acid receptor α (Rarα) inhibition. J. Biol. Chem. 286:33369–79
    [Google Scholar]
  203. 203.
    Kamitani S, Ohbayashi N, Ikeda O, Togi S, Muromoto R et al. 2008. KAP1 regulates type I interferon/STAT1-mediated IRF-1 gene expression. Biochem. Biophys. Res. Commun. 370:366–70
    [Google Scholar]
  204. 204.
    Ferri F, Parcelier A, Petit V, Gallouet AS, Lewandowski D et al. 2015. TRIM33 switches off Ifnb1 gene transcription during the late phase of macrophage activation. Nat. Commun. 6:8900
    [Google Scholar]
  205. 205.
    Ji DX, Witt KC, Kotov DI, Margolis SR, Louie A et al. 2021. Role of the transcriptional regulator SP140 in resistance to bacterial infections via repression of type I interferons. eLife 10:e67290
    [Google Scholar]
  206. 206.
    van Gent M, Sparrer KMJ, Gack MU. 2018. TRIM proteins and their roles in antiviral host defenses. Annu. Rev. Virol. 5:385–405
    [Google Scholar]
  207. 207.
    Fraschilla I, Jeffrey KL. 2020. The speckled protein (SP) family: immunity's chromatin readers. Trends Immunol. 41:572–85
    [Google Scholar]
  208. 208.
    King CR, Mehle A. 2020. The later stages of viral infection: an undiscovered country of host dependency factors. PLOS Pathog. 16:e1008777
    [Google Scholar]
  209. 209.
    Ver LS, Marcos-Villar L, Landeras-Bueno S, Nieto A, Ortin J. 2015. The cellular factor NXP2/MORC3 is a positive regulator of influenza virus multiplication. J. Virol. 89:1910023 Erratum. 2017 J. Virol. 92:1e01757–17
    [Google Scholar]
  210. 210.
    Bogunovic D, Byun M, Durfee LA, Abhyankar A, Sanal O et al. 2012. Mycobacterial disease and impaired IFN-gamma immunity in humans with inherited ISG15 deficiency. Science 337:1684–88
    [Google Scholar]
  211. 211.
    Zhang X, Bogunovic D, Payelle-Brogard B, Francois-Newton V, Speer SD et al. 2015. Human intracellular ISG15 prevents interferon-alpha/beta over-amplification and auto-inflammation. Nature 517:89–93
    [Google Scholar]
  212. 212.
    Sokol CL, Barton GM, Farr AG, Medzhitov R. 2008. A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat. Immunol. 9:310–18
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-101721-031732
Loading
/content/journals/10.1146/annurev-immunol-101721-031732
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error